Spring 2023 – i-Tree Open Academy Session 1: Introduction to i-Tree

Understanding the benefits of trees for people, places, and planning

Plan for today

- 1. What is i-Tree?
- 2. What results can I get from i-Tree?
- 3. Overview of the 2023 i-Tree tools
- 4. Introduction to the science of i-Tree
- 5. Example i-Tree uses

What is i-Tree? "Putting USFS Urban Forest science into the hands of users"

> Public domain science

- \succ Free tools
- Technical support
- Continuously improved

www.itreetools.org

the USDA Forest Service to all types of users with free tools and support.

The trees around you: remove hazardous pollutants from the air you breathe, absorb carbon dioxide from the air to store as wood. and **control storm water** by intercepting and absorbing rainfall.

Trees provide more than just beauty and shade.

They work hard for all of us, every day! Click here to learn more.

Tools for assessing individual trees

MvTree

Are you new to i-Tree? Start with our EASIEST tool! MyTree helps you quickly assess individual trees with a minimum of fuss. web browser or Android | Apple devices; Learn How to use it!

i-Tree Design

A full-featured web tool with expanded building interactions and forecasting for estimating the benefits of individual trees. via your web browser; Learn How to use it!

i-Tree Eco

Eco is our flagship tool that accommodates tree inventory IMPORT or field data evaluation to derive individual tree benefit estimates. requires installation on a Windows PC; Learn How to use it!

Tree canopy area assessment tools

OurTrees

Beta release: Quick tree canopy and related information for your community within the continental US! web browser or Android | Apple devices

i-Tree Landscape

US tree canopy and Census maps/data at your fingertips! Identify priority planting & protection areas for climate & social issues. via your web browser; Learn How to use it!

i-Tree's Vision

To improve forest and human health, and forest and city resiliency through easy-to-use technology that engages people globally in enhancing forest management.

i-Tree Demonstrating tree value

What does i-Tree Estimate and Why?

Energy Tree impacts on heating and cooling

> **Stormwater** Avoided runoff, evaporation, transpiration

Air Quality Interaction with EPA criterion pollutants resulting in improved health

Example: What does i-Tree estimate?

Urban Forest Effects and Values January 2020

*Some analyses and report options are limited to the US location and certain types of project

- Structure leaf area, condition, species distribution, importance values
- Function
 - Carbon
 - Hydrology effects
 - Energy effects *
 - Air pollution removal
 - 🗧 Human health impacts 🗡 🗲
 - Volatile organic compounds (VOCs)
 - Ultraviolet (UV) reduction
- Value (\$)

Management information

- Pest & disease susceptibility *
- Limited tree maintenance needs
- User defined options (3)
- Wildlife suitability *
- Forecasting
- Cost benefit ratio anlaysis

Example: What does i-Tree estimate?

- Number of downtown trees: 9,755 Tree cover: 126.33 acres
- Pollution removal: 2.6 tons/year
 \$14.5 thousand/year
- Carbon storage: 4,845 tons
 \$645 thousand
- Carbon sequestration: 83.1 tons/year \$11.1 thousand/year
- Avoided runoff: 200,100 cubic feet/year (\$13.4 thousand/year)
- Replacement values: \$11.3 million

Table 1. Most important species in Rochester Street Trees

	Percent	Percent	
Species Name	Population	Leaf Area	IN
Acer platanoides	15.3	27.7	43.0
Fraxinus pennsylvanica	5.2	9.5	14.7
Acer saccharum	5.8	8.1	13.9
Celtis occidentalis	5.2	6.8	12.0
Picea	5.9	5.9	11.
Malus	7.7	3.3	11.0
Gleditsia triacanthos	6.4	3.7	10.
Ulmus americana	3.6	4.2	7.
Tilia cordata	3.2	3.9	7.
Acer saccharinum	2.5	4.4	6.

The 2023 i-Tree Suite of Tools

**i*-Tree Tools that can be used internationally

i-Tree model basics: Inventory data tree benefits?

Key field variables

- DBH
- Crown
 - measurements
- Species
- Tree health
- Building interactions
- Light availability

i-Tree model basics: Inventory data tree benefits?

i-Tree Tool Relationships

Science of i-Tree - Air pollution benefits Step 1: Estimate tree <u>structure</u>: Leaf surface area

1. With at least dbh and species we can predict crown size measurements

Red maple height = $e^{(2.6393 + (\ln(DBH) * 0.5613))}$

18 in dbh red maple has an estimate height of 70 ft

2. With crown size measurements we can estimate crown volume

_Tree height

3. With volume we can estimate leaf surface area

In of leaf area = -4.33 + 0.29 * ht + +0.7312 * crown diam + 5.72 species leaf density + -0.015 crown surface area

Leaf surface area for our 18 in red maple = 5,842 sq ft

Leaf surface area of 18" dbh trees

Eastern white pine

Honeylocust

4,281 sq ft

Northern red oak

6,038 sq ft

5,516 sq ft

Step 2: Estimate tree <u>function</u> Gas exchange - NO_2 , O_3 , SO_2 Deposition - particulate matter (PM2.5) and CO

Local hourly weather data:

- windspeed
- sunlight
- rainfall
- humidity

Local hourly pollution data

Tree structure data

- Leaf area
- Leaf on/off dates
- Deciduous vs. evergreen

Pollution removal

▲ Removal Value

Step 3: Estimating value Monetary value of pollution removal by trees

SEPA United States Environmental Protection Agency

Benefits Mapping and analysis program (BenMAP)

Inputs:

Local census data

- total population
- population by age

Estimates of pollution reduction

hospital admissions by 100

is \$5,000 in the year 2010

The economic value is the number of cases multiplied by the value of each admission

Grand rapids pollution removal value

	PM2.5						
	Incidence	Value					
	(Reduction/yr)	(\$/yr)					
Acute Bronchitis	0.206	18.12					
Acute Myocardial Infarction	0.051	4,543.25					
Acute Respiratory Symptoms	112.666	11,043.29					
Asthma Exacerbation	88.133	7,164.56					
Chronic Bronchitis	0.086	24,042.76					
Emergency Room Visits	0.134	55.73					
Hospital Admissions							
Hospital Admissions, Cardiovascular	0.030	1,164.32					
Hospital Admissions, Respiratory	0.026	821.49					
Lower Respiratory Symptoms	2.486	129.08					
Mortality	0.285	2,214,131.18					
School Loss Days							
Upper Respiratory Symptoms	2.048	91.95					
Work Loss Days	19.238	3,298.60					
Total	225.389	2,266,504.33					

• 1

Key points about the science of i-Tree

- Based on research from over a dozen different researchers
- Researchers associated with half a dozen different organizations
- Research is continuously updated
- Estimates are generally conservative

Understanding i-Tree

ch Station | General Technical Report NRS-200-2021 | December 2021

Understanding i-Tree: 2021 Summary of Programs and Methods

David J. Nowak

Table 2.—Summary of which directly field-measured characteristics are used to estimate derived variables and ecosystem services. D= directly used; I= indirectly used; C= conditionally used.

	DERIVED VARIABLES			ECOSYSTEM SERVICES									
DIRECT MEASURES	Leaf Area	Leaf Biomass	Carbon Storage	Gross Carbon Sequestration	Net Carbon Sequestration	Energy Effects	Air Pollution Removal	Avoided Runoff	Transpiration	VOC Emissions	Compensatory Value	Wildlife Suitability	UV Effects
Species	D	D	D	D	D	D	I	I	I.	D	D		
Diameter at breast height (d.b.h.)			D	D	D						D	D	
Total height	D	D	С	С	С	D	I	1	I	1		D	
Crown base height	D	D	С				1	1	1	I			
Crown width	D	D	С				I	I	I	I			
Crown light exposure			С	D	D								
Percent crown missing	D	D	С	С	С	D	I	I	I	I			
Crown health (condition/ dieback)				D	D						D	D	
Field land use				D							D	D	
Distance to building						D							
Direction to building						D							
Percent tree cover						D	D	D				D	D
Percent shrub cover							D					D	
Percent building cover						D							
Ground cover composition							1					D	

https://www.fs.usda.gov/research/treesearch/63636

Opportunities for communities

If you can't measure it, you can't manage it.

- Map your canopy: Knowing how tree distribution aligns with demographics can help managers maximize equity
- Species Diversity/Composition:
 Diversity reduces environmental threats, increases resilience
- Size/Age Class Distribution:
 Distribution of age informs
 sustainability

DBH Class (cm

Opportunities for Communities...

- Integrate urban forests in policies: sustainability, equity, climate, resiliency, air quality, public health, stormwater
- Plan and manage urban forest resources more strategically to serve and protect citizens
- Advocate with data
- Improve preservation & health of trees and forests
- Connect urban and rural forest importance

Revealed: the 10 worst places to live in US for air pollution

Opportunities for Communities...

- Economic opportunities: attract & retain new businesses and residents
- Promote green tourism and investment
- Create green industry jobs
- Sustainable development
- Youth education & community engagement
- Develop new relationships & partnerships...

"These six trees store 14,291 lbs of carbon and continue to sequester 470 lbs of carbon each year. i-Tree For comparison, the 1,316 small trees between 1-4 inches DBH in this study store a combined total of 16,567 lbs of carbon"

From Corey Bassett, https://www.itreetools.org/documents/352/UPenn_iTreeEcoInventory.pdf

Keys to using i-Tree effectively

- Define objectives (what does success look like?)
- Understand tool advantages, limitations, and options available
- Can i-Tree help you achieve desired outcomes?
- Evaluate your resources (time, equipment, money, technical capacity, potential collaborators) to plan, manage and complete a project.
- Consider pilot projects that can be used to learn, show potential, and justify scaling up projects.
- Connect data and results to things that matter to people

There are lots of resources to help

i-Tree

ABOUT

TOOLS

NEWS

SUPPORT

www.itreetools.org

Videos

Documentation

Online tools

Support

Examples

Downloads

Newsletters

Webinars

info@itreetools.org

LEARN ABOUT I-TREE More than beauty and shade, trees work hard for us all. Explore how trees improve the environment in communities big and small, urban and rural...even in your own backyard!

EN ES

Q

Search the site