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WEIGHTING NITROGEN AND PHOSPHORUS PIXEL POLLUTANT LOADS

TO REPRESENT RUNOFF AND BUFFERING LIKELIHOODS1

Emily A. Stephan and Theodore A. Endreny2

ABSTRACT: Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural
areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of
spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint
source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood
and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing
area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how water-
shed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence
nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface
buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate
maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates
how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of
elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS load-
ing. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high
nutrient export.

(KEY TERMS: nonpoint source pollution; watershed management; nutrients; runoff; land use/land cover change;
urbanization.)

Stephan, Emily A. and Theodore A. Endreny, 2016. Weighting Nitrogen and Phosphorus Pixel Pollutant Loads
to Represent Runoff and Buffering Likelihoods. Journal of the American Water Resources Association (JAWRA)
52(2): 336-349. DOI: 10.1111/1752-1688.12390

INTRODUCTION

Nonpoint source (NPS) pollution is a pervasive
water quality problem around the world, delivering
excess nitrogen (N) and phosphorus (P) nutrients to
rivers, lakes, and estuaries and causing cultural, or
accelerated, eutrophication with excessive plant and
algae growth (Carpenter et al., 1998; Kaushal et al.,
2011). Cultural eutrophication due to N and P runoff

from human activities is the primary impairment fac-
ing most surface waters today (Smith and Schindler,
2009). To address this impairment and improve aqua-
tic ecosystem health, watershed management pro-
grams often seek to identify and then reduce human
generated N and P loading (Conley et al., 2009; Lewis
et al., 2011). Management for NPS runoff must con-
sider that some loading of N and P is required to sup-
port aquatic plant and algae growth, and the relative
abundance of these limiting nutrients in rivers, lakes,

1Paper No. JAWRA-14-0205-P of the Journal of the American Water Resources Association (JAWRA). Received September 24, 2014;
accepted November 24, 2015. © 2016 American Water Resources Association. Discussions are open until six months from issue publi-
cation.
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and estuaries is what triggers cultural eutrophication
(Conley et al., 2009). Concentrated human activities
within urban areas represents a unique problem,
both generating complex sources and elevated magni-
tudes of N and P pollutant runoff (Kaye et al., 2006)
and diminishing interaction between runoff and vege-
tated land cover that provide nutrient sinks through
filtration and transformation (Bettez and Groffman,
2012). Watershed water quality models can assist
with NPS identification nutrient loading hotspots,
but must balance model accuracy and complexity
with data availability and feasibility (e.g., Borah and
Bera, 2004; Zhang et al., 2012).

Urban managers seeking spatially distributed,
rainfall-runoff watershed models to identify NPS
hotspots and predict receiving water loading of N
and P often model mixed-use watersheds, comprised
of urban, agricultural, and forested land covers. A
variety of tools are available for urban runoff simu-
lation, including the U.S. Environmental Protection
Agency (USEPA) SWMM (stormwater management
model) (Huber, 1995), RHESSys (Regional Hydro-
Ecologic Simulation System) (Tague and Band,
2004), and U.S. Department of Agriculture (USDA)
i-Tree Hydro (Wang et al., 2008). SWMM simulates
the routing of pervious and impervious runoff from
user-defined subwatersheds into storm sewers, with
the option for the user to insert a best management
practice upstream of the storm sewer. The SWMM
tool does not use elevation and land cover data to
predict runoff pathways and the intersection of run-
off, pollutants, and filtration, but instead has the
user define connections between runoff sources,
treatments, and sinks. RHESSys is a continuous
simulation, spatially-distributed tool using advanced
governing equations to represent the hydrologic bud-
get within a spatially distributed geographic infor-
mation system (GIS) representation of watershed
elevation and land cover data, operating at a daily
time step to predict runoff generation, flow paths,
and N nutrient processes (Tague and Band, 2004).
This tool is typically applied to highly instrumented
watersheds, requiring extensive parameterization,
and might be considered a higher order model. By
contrast, the i-Tree Hydro (v5) model is a continuous
simulation, statistically-distributed first order, or
parsimonious, model of the hydrologic budget, using
the basic governing equations to predict the distribu-
tion of soil saturation and runoff response to rainfall
and snowfall for each hydrologically similar area,
defined by the topographic index (Beven and Kirkby,
1979). The i-Tree Hydro model uses nationally avail-
able datasets with a database of location data,
including leaf on and off dates, to represent the
influence of elevation, soils, and vegetation on satu-
ration excess and infiltration excess runoff (Wang et

al., 2008). The i-Tree Hydro model, like SWMM,
combines the total surface runoff with event mean
concentration (EMC) values (mg/L) to simulate the
NPS pollutant load entering receiving waters.

Simulation of rural watershed areas should
account for agricultural and forest land cover, and
popular continuous simulation, spatially distributed
models include the USDA’s SWAT (Soil Water
Assessment Tool) (Douglas-Mankin et al., 2010),
USEPA’s HSPF (Hydrologic Simulation Program —
Fortran) (Donigian et al., 1995), and AgNPS (Agri-
cultural NonPoint Source) (Young et al., 1989), each
developed more than 30 years ago. While these mod-
els can represent the spatial heterogeneity of land
cover, only AgNPS simulates the effect of runoff flow
paths on changes in water quality, with user defined
flow paths establishing connectivity between land
use types (Fisher et al., 1997). An alternative to the
higher order, extensively parameterized models (e.g.,
SWAT, HSPF, AgNPS) is the first order, empirical
Export Coefficient model which estimates the water-
shed annual NPS load of N or P, and can use GIS
to map and sum the product of land cover type area
and the export coefficient (EC) value (kg/ha/yr) spec-
ified for each land cover type (Reckhow et al., 1980;
Reckhow and Simpson, 1980). The EC model was
combined with theory of variable source area hydrol-
ogy and vegetative filtering of nutrients in the con-
tributing area and dispersal area (CADA) model
(Endreny and Wood, 2003). The CADA model used
biophysical algorithms to auto-calculate flow paths
surrounding each pixel EC value; runoff from the
pixel was given a likelihood based on the topo-
graphic index, which is the quotient of the contribut-
ing area and pixel slope while filtering below the
pixel was given a likelihood based on a buffering
index, which is the quotient of dispersal area and
flow path slope through land cover types known to
buffer NPS pollution.

The CADA EC model predicted which watershed
pixels were P loading hotspots using existing terrain
and land cover maps and a regional EC dataset. For
each land cover pixel, the product of runoff likelihood,
buffer likelihood, and EC value provided a weighted
EC value, which was mapped across the watershed
and summed to provide the total watershed P load
(Endreny and Wood, 2003). While the CADA EC
model could rapidly identify potential hotspots of P
loading, it was not extended to simulate N loading,
EMC loads from urban areas, the difference between
impervious and pervious runoff likelihood, or the dif-
ference in buffer likelihood along subsurface vs. sur-
face flow paths, which are important characteristics
of mixed-use watersheds.

This article presents an enhanced CADA NPS
model that includes: (1) flexibility to use EC, EMC
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or other NPS loading data for N or P loads; (2) rep-
resentation of impervious and pervious runoff paths
in the contributing area; and (3) representation of
surface and subsurface buffer paths in the disper-
sal. In the methods section the model algorithms
and data sources are introduced, and in the results
section a sensitivity test is examined that explains
model response to differences in the horizontal reso-
lution of the terrain and land cover inputs that are
critical in contributing and dispersal area calcula-
tions.

MATERIALS AND METHODS

Site Description

The watershed used for this study is delineated
from Onondaga Creek at Spencer Street (USGS
gage 02420010, located at 43°03027″, �76°09045″)
and it drains south to north, with headwaters in
the Appalachian Plateau reaching an elevation of
587 m, its outlet in the City of Syracuse at an ele-
vation of 110 m (Figure 1). The watershed has an
area of 298 km2, of which 53 km2 is classified as
developed, and an area of 24.1 km2 held as sover-
eign land by the people of the Onondaga Nation.
Based on the 2006 National Land Cover Database
(NLCD) impervious surface maps, only 6% of the
study area is designated as impervious cover, and
this is concentrated near the northern watershed
outlet (see NLCD classes 21, 22, 23, and 24 in Fig-
ure 1). The annual average precipitation for Syra-
cuse, New York, is 96.5 cm depth, with an average
annual liquid equivalent snowfall of 32 cm, and
average monthly total precipitation ranging between
8.1 and 10.4 cm. The average annual air tempera-
ture is 9.1°C with a February average low of
�8.3°C and July average high of 27.8°C. Flow in
Onondaga Creek is regulated by an earthen dam
near the northern edge of Onondaga Nation land,
designed to allow nonflood flows to pass at grade
with the channel bed through a 2 m diameter con-
crete culvert; when floods fill the reservoir behind
the dam the culvert constrains maximum discharge
to 36 m3/s.

Model Structure

The enhanced CADA NPS model is built upon the
framework of Endreny and Wood (2003) to create a
map of watershed runoff likelihood and buffer likeli-
hood values using publicly available GIS inputs,

which include digital elevation model (DEM) data,
NLCD, Soil Survey Geographic (SSURGO) data, as
well as annual rainfall data and look-up tables of
EC and EMC NPS values. The enhanced CADA
model: (1) calculates separate urban and rural NPS
pollutant loads for each pixel, using ECs on rural
pixels and EMCs on urban pixels; (2) calculates a
separate surface and subsurface runoff index (RI)
for each pixel based on the fraction of impervious-
ness and perviousness in each upslope pixel, which
is related to an estimate of surface and subsurface
wetness; and (3) calculates a separate surface and
subsurface buffer index (BI) for each pixel based on
flow resistance and potential energy, which is
related to runoff velocity and an estimate of NPS
buffering. The entire set of pixel specific RI and BI
values are normalized to the watershed mean RI
and BI values (or median values, depending on user
preference), and multiplied by the land cover NPS
load to quantify pollutant loading likelihood, which
will range from relatively high to low across the
watershed. The updated CADA NPS equations calcu-
late weighted surface and subsurface NPS loads for
each pixel i, NPSsurf,i,weighted and NPSsub,i,weighted as:

FIGURE 1. Site Map for Onondaga Creek Watershed
at Spencer St. National Land Cover Database (NLCD).
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NPSsurf ;i;weighted ¼ NPSsurf ;i � RIsurf ;i
RIsurf ;avg

� BIsurf ;avg
BIsurf ;i

ð1Þ

NPSsub;i;weighted ¼ NPSsub;i � RIsub;i
RIsub;avg

� BIsub;avg
BIsub;i

ð2Þ

where NPSi represents the unweighted NPS load (kg/
ha/yr) for land cover type i, RIi is the pixel’s surface
or subsurface runoff index value, the RIavg is the cor-
responding average surface or subsurface runoff
index in the watershed, the BIi is the pixel’s surface
or subsurface buffer index value, and BIavg is the cor-
responding average surface or subsurface buffer
index in the watershed. The RI and BI terms in
Equation (1) use algorithms specific to subsurface
and surface runoff and buffer processes.

Urban and Rural, Surface and Subsurface Pollutant
Loads

Land cover EC values (kg/ha/yr) were obtained
from a local Onondaga Creek study (Coon and Reddy,
2008) as well as from a range of nationally reported
values (see Table 1), while EMC values (mg/L) were
obtained from the i-Tree Hydro model, which com-
piled data from the USEPA and others (USEPA,
1983) (Table 1). The NPS pollutant of P was simu-
lated as total phosphorus entrained in surface runoff
processes, denoted as NPSsurf,i in Equation (1). The
NPS pollutant of N was simulated as dissolved

nitrate in subsurface runoff processes, denoted as
NPSsub,i in Equation (2).

EMC values (mg/L) were converted into mass per
hectare per year loads NPSi (kg/ha/yr) by taking the
product of the EMC value and estimated annual run-
off depth (m), and accounting for unit conversions.
The annual runoff depth was determined using a
modified version of the USEPA Simple Method:

NPSi ¼ 10;000� P� Pj � Rv � EMCi ð3Þ

where NPSi represents the pixel i pollutant load (kg/
ha/yr), 10,000 is a unit conversion factor, P is annual
rainfall (m), Pj is fraction of annual rainfall events
that cause runoff (default is 0.9), Rv is the runoff
coefficient, and EMCi is the pixel i pollutant concen-
tration (mg/L). Uniform EMC values of 0.266 mg/L
for TP and 0.666 mg/L for nitrate were used on each
developed NLCD class 21-24, which range from low
to high intensity developed and are concentrated in
the city limits (Figure 1); the choice of uniform values
is in keeping with USEPA Nationwide Urban Runoff
Program (NURP) findings (USEPA, 1983). EMC val-
ues for a range of land uses can be found in Table 2;
we have chosen to use uniform EMC values reported
above due to the lack of statistical difference between
land use types. The CADA model predicts variation
in EMC derived loads (e.g., NPSi) due to variation in
the Rv, which were set based on the fraction of pixel
imperviousness (Ia), where Rv = 0.05 + 0.9(Ia) (Schue-
ler, 1987).

The EMC values reported by NURP are lognor-
mally distributed, so we can determine the 10th
(Equation 4) and 90th (Equation 5) percentile values
to get a range of low to high EMC estimates:

TABLE 1. Export Coefficient Table.

NLCD Class Land Use Description Area (ha)

Locally Derived
EC Value — TP

(kg/ha/yr)

Locally Derived
EC Value — Nitrate

(kg/ha/yr)
EC TP Range
(kg/ha/yr)

EC Nitrate
Range (kg/ha/yr)

11 Open water 86 0.00 0.00 — —
21 Developed, open Space 1,876 0.86 1.79 — —
22 Developed, low intensity 1,626 0.54 2.35 — —
23 Developed, medium intensity 1,251 0.54 2.35 — —
24 Developed, high intensity 513 1.15 4.93 — —
31 Barren land (rock/sand/clay) 66 0.86 1.79 0.19-6.23 0.49-3.0
41 Deciduous forest 9,132 0.10 3.70 0.019-0.830 0.59-4.6
42 Evergreen forest 312 0.10 3.70 0.019-0.830 0.59-4.6
43 Mixed forest 728 0.10 3.70 0.019-0.830 0.59-4.6
52 Shrub/scrub 2,798 0.10 3.70 0.019-0.830 0.59-4.6
71 Grassland/herbaceous 183 0.10 3.70 0.019-0.830 0.59-4.6
81 Pasture/hay 6,163 0.28 6.50 0.14-4.90 4.6-20.4
82 Cultivated crops 3,185 2.37 12.44 0.10-18.6 4.6-20.4
90 Woody wetlands 1,835 0.05 0.34 0.05-0.21 —
95 Emergent herbaceous wetlands 83 0.05 0.34 0.05-0.21 —
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10x ¼ expðln 50x þ z10 � rð ÞÞ ð4Þ

90x ¼ expðln 50x þ z90 � rð ÞÞ ð5Þ

where 50x is the median EMC value, z is the z-score
corresponding to the desired percentile, and r is the
standard deviation for the distribution (in this case,
both nitrate and phosphorus had r ranging from 0.5
to 1, so 0.75 was used).

Runoff Indices — Surface and Subsurface

Surface Runoff Index. The surface runoff index,
RIsurf,i, is based on the topographic index equation for
saturation likelihood (Beven and Kirby, 1979), which
was modified to only accumulate for each pixel i its
upslope area in impervious cover:

RIsurf ;i ¼ ln
FAimp;i

Ssurf ;i

� �
ð6Þ

where FAimp,i is the flow accumulation of impervious
area per pixel width, Ssurf,i is the local pixel surface
terrain slope (tan ß, where ß is in degrees). FAimp,i

was computed with the ArcGIS flow accumulation
function, which uses a flow direction grid, derived
from the DEM, to determine the upslope pixels that
drain to the local pixel i, and a weighting grid of
scalar values that will be accumulated, or summed,
within the upslope area. For FAimp,i the weighting
grid was set to total impervious area per pixel width;
e.g., an upslope pixel with 10 m 9 10 m sides has a
contour width of 10 m, and if it had 85% impervious
cover, it would contribute 8.5 m = [10 m 9 10 m 9

0.85 m]/10 m.

Subsurface Runoff Index. The subsurface run-
off index, RIsub,i is based on the soil topographic
index equation for saturation likelihood (Sivapalan

et al., 1987), which was modified to only accumulate
for each pixel i its upslope area in pervious cover:

RIsub;i ¼ ln
TavgFAper;i

TiSsub;i

� �
ð7Þ

where Tavg is the mean transmissivity (m2/day) of the
watershed and Ti is the transmissivity of the specific
cell, where transmissivity is defined as the product of
watertable depth and hydraulic conductivity, FAper,i

is the flow accumulation of pervious area per pixel
width, and Ssub,i is the local subsurface watertable
slope (tan ß, where ß is in degrees). The pixel imper-
vious cover fraction, and its compliment of pervious
cover fraction, was provided by NLCD 2006 data. The
pixel transmissivity was provided by SSURGO data;
pixels without SSURGO data, such as the Onondaga
Nation in our study area, set Ti = Tavg.

Buffering Indices — Surface and Subsurface

Surface Buffering Index. The surface buffering
index is derived as the inverse of travel time from the
source pixel to the receiving water, along a lateral sur-
face flow path that follows the terrain slopes. Travel time
is derived as the quotient of travel length and velocity:

ssurf ;i ¼ li
Vsurf ;i

ð8Þ

where l (m) is travel path distance across pixel i, and
Vsurf (m/s) is the surface runoff velocity for pixel i,
computed with the Manning equation:

Vsurf ¼ Cm

n
R2=3S1=2 ð9Þ

where Cm is the Manning coefficient of 1 for SI units
(1.486 for BG units), R is the hydraulic radius (m) of
flow depth, which varies by land cover (Wurbs and
James, 2002; Table 8.1), S is the slope (tan ß, where ß

TABLE 2. Median Event Mean Concentrations for Urban Land Uses (U.S. Environmental Protection Agency, Washington, D.C., 1983).

Pollutant Units Residential Mixed Commercial Open/Nonurban

BOD mg/L 10 7.8 9.3 —
COD mg/L 73 65 57 40
TSS mg/L 101 67 69 70
Total lead lg/L 144 114 104 30
Total copper lg/L 33 27 29 —
Total zinc lg/L 135 154 226 195
Total Kjeldahl nitrogen lg/L 1,900 1,288 1,179 965
Nitrate + nitrite lg/L 736 558 572 543
Total phosphorus lg/L 383 263 201 121
Soluble phosphorus lg/L 143 56 80 26

Note: BOD, biochemical oxygen demand; COD, chemical oxygen demand; TSS, total suspended solids.
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is slope angle) of the surface pixel, and n is the Man-
ning roughness coefficient (unitless; Table 1, Engman,
1986; Wurbs and James, 2002). The ssurf,i is set to 0 for
all surface water pixels, which are considered receiving
waters that have no buffering. The surface buffering
index is then calculated as the flow accumulation of
travel times for all pixels in the dispersal area:

BIsurf ¼ FAssurf ;i ð10Þ

where FAssurf ;i uses a flow direction grid derived from a
negated DEM (i.e., relatively large positive elevations
along ridges become large negative elevations, lower
than those of relatively small negative elevations
within valleys), and a weighting grid of ssurf,i. The
BIsurf calculation is based on longer travel times equat-
ing to greater chances for pollutant removal through a
range of biophysical processes, such as particle set-
tling, filtration, decay, uptake, and other mechanisms.

Subsurface Buffering Index. The subsurface
buffering index is derived as a function of travel time
from the source pixel to the receiving water, along a
lateral groundwater flow path that follows the water-
table slopes. Travel time is derived as the quotient of
travel length and velocity:

ssub;i ¼ li
Vsub;i

ð11Þ

where l (m) is travel path distance for pixel i, and
Vsub (m/s) is the subsurface runoff velocity for pixel i,
computed with the Darcy equation:

Vsub;i ¼ �Kidzi=dl � 1=pi ð12Þ

where Ki represents the pixel hydraulic conductivity
(m/s), dzi=dl represents the watertable gradient
across the pixel, where zi is pixel depth to watertable
(m), and p is the pixel soil porosity. The ssub,i is set to
0 for all surface water pixels, which are considered
receiving waters that have no buffering. The zi term
was determined as a function of runoff index, similar
to the approach used by Endreny and Wood (1999):

zi ¼ �z� 1

f
ðRIsub;i �RIsub;avgÞ ð13Þ

where f parameterizes the decay of soil transmissivity
with depth, and �z represents the watershed average
depth to watertable, which can be set using expert
knowledge, calibration, or using the SSURGO dataset
to determine the depth to the restrictive layer, as was
done in this study. For the Onondaga Creek watershed,
SSURGO reported watertable depths ranged from 36
to 201 cm, and saturated hydraulic conductivity ran-

ged from 1 to 25 cm/h. The subsurface buffering index
is then calculated as the flow accumulation of travel
times for all pixels in the subsurface dispersal area:

BIsub ¼ FAssub;i ð14Þ

where the FAssub;i algorithm uses flow directions
derived from a negated watertable elevation map and
a weighting grid of ssub,i. The BIsub calculation is
based on longer travel times equating to greater
chances for pollutant removal through a range of bio-
physical processes, such as particle filtration, decay,
uptake, and other mechanisms.

CADA Model Sensitivity Tests

The CADA model predictions of N and P loading
were tested for sensitivity to the spatial resolution of
elevation and land cover inputs and the selection of
EC and EMC values. Elevation and land cover are the
data principal inputs for computation of the RI and BI
terms in Equations (6), (7), (10), and (14). The spatial
resolution of elevation and land cover was varied
within a 4.2 ha sewershed in the City of Syracuse that
had been surveyed using high-resolution airborne
remote sensing to acquire elevation maps with 0.3 m
horizontal resolution and 0.01 m vertical accuracy,
and land cover maps at 0.3 m horizontal resolution
classified into tree cover, pervious grass cover, and
impervious cover. The 0.3 m resolution elevation and
land cover inputs were resampled into coarser 1 and
10 m resolution products, representing resolutions
that contain sub-grid heterogeneity within an urban
landscape of crowned roads, curbs, herbaceous lawns,
trees, sidewalks, and buildings. While the CADA runs
required that SSURGO data be resampled into corre-
sponding grids of 0.3, 1, and 10 m resolution, the initial
SSURGO polygon areas were all larger than 100 m2,
and there was no loss of soil information moving
between 0.3 and 10 m grid sizes. Using a fixed 10 m
resolution for all inputs, the CADA model was also run
with three different combinations of pixel NPS inputs,
using EC values for all urban and rural pixels, EMC
values for all urban and rural pixels, and EC values for
rural pixels and EMC values for urban pixels.

RESULTS AND DISCUSSION

Urban and Rural, Surface and Subsurface Pollutant
Loads

The spatial distribution and total watershed load
of CADA predicted P and N values are highly sensi-

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION JAWRA341

WEIGHTING NITROGEN AND PHOSPHORUS PIXEL POLLUTANT LOADS TO REPRESENT RUNOFF AND BUFFERING LIKELIHOODS



tive to the selection of pixel NPS inputs. The spatial
distribution of weighted P and N loads for each pixel
have heterogeneity in rural areas and more unifor-
mity in urban areas when CADA was run with a com-
bination of EC and EMC values (Figures 2A and 2D),
while P and N loads were more uniform throughout
the watershed when CADA was run with EC values
(Figures 2B and 2E), and P and N loads were more
heterogeneous when CADA was run with EMC values
(Figures 2C and 2F). The CADA predicted watershed

P load was 14.9 tonnes/yr when estimated by the
combination of EC and EMC values, slightly climbed
to 15.6 tonnes/yr when estimated with only EC val-
ues, and significantly dropped to 6.7 tonnes/yr when
estimated by only EMC values; the high and low P
load range spanned 60% of the P load estimated by
the load estimated by the combination of EC and
EMC values. The CADA predicted watershed N load
was 152.4 tonnes/yr when estimated by the combina-
tion of EC and EMC values, dropped to 138.9 tonnes/

FIGURE 2. Demonstration of Using Export Coefficients and Event Mean Concentrations (EC&EMC), Only EC, and Only EMC to
Determine Total Phosphorus (A-C) and Nitrate (D-F) Loads.
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yr when estimated by only EC values, and climbed to
178.2 tonnes/yr when estimated by only EMC values;
the high and low N load range spanned 25% of the N
load estimated by the combination of EC and EMC
values. For the CADA simulation using EC and EMC
data, the 17.6% of the watershed area classified as
developed land received EMC inputs, and EC inputs
were applied to the remaining watershed area, and
account for the majority of the P and N watershed
loads. The 60% variation in CADA estimated P loads
vs. a 25% variation in N loads is explained by the
large variation in P EMC and EC inputs vs. N EMC
and EC inputs (Table 1).

Use of EC input values for CADA estimates of
NPS loads is recommended for rural land cover pix-
els, while EMC input values are recommended for
NPS loads in urban land cover pixels. When EC
inputs were used to estimate NPS loads on urban pix-
els (NLCD 21-24, Figure 1), the CADA model pre-
dicted fewer P loading hotspots in those urban areas
than when hotspots were predicted using EMC
inputs, where hotspots are defined as red colored pix-
els with a NPS P load >3.3 kg/ha/yr; this contrast in
hotspots is illustrated in Figures 2B and 2C within
the City of Syracuse polygon at the north end of the
watershed. By contrast, the EC input values led to
higher P estimates for rural agricultural pixels
(NLCD 81 and 82, Figure 1) than estimated with
EMC input values, which is noted by more yellow
and orange colored pixels with a NPS P load >1.3 kg/
ha/yr (see Figures 2B and 2C, to the south of the City
of Syracuse, along Onondaga Creek tributaries). For
CADA estimates of NPS N loads, the EC input values
led to lower N loads on urban pixels than N loads
estimated by the EMC input values, which is noted
by fewer yellow colored pixels (>5.4 kg/ha/yr) in the
City of Syracuse (Figures 2E and 2F). The EC input
values led to higher estimates of NPS N loads for
rural agricultural pixels than N loads estimated with
EMC input values, noted by more orange and red pix-
els (>9.1 kg/ha/yr) along the headwater tributaries.
Due to the small variation in impervious cover and
the associated runoff coefficient, Rv, there was little
spatial variation in CADA estimated P and N loads
for rural areas when EMC input values were used
(see large area in blue color with 0-0.5 kg/ha/yr of P
in Figure 2E, and large area in yellow color with 5.4-
9.1 kg/ha/yr of N in Figure 2F). By contrast, when
EC input values were used, loading was not sensitive
to the Rv, but instead correlated strongly with land
cover classes; note the greater heterogeneity with
EC-based loads than EMC-based loads in the south-
ern watershed (Figure 2E vs. 2F). The CADA model
estimates of NPS N and P loads in this case were
more sensitive to EMC and EC inputs than to buffer-
ing processes in the runoff distribution area.

The accuracy of CADA-predicted NPS loads was
constrained by the first-order and parsimonious nat-
ure of the model equations and by our choice to not
calibrate the model inputs of EC or EMC or vary
inputs across years. In a test of accuracy, the CADA
predicted P load using a combination of EC and EMC
inputs was 25% above the observed 11.16 tonnes/yr
load, while the CADA predicted N load was 6.6%
below the observed 162.5 tonnes/yr load. These
observed loads represent a six year average, obtained
using water quality and discharge data collected by
the U.S. Geological Survey (USGS) at the Onondaga
Creek Spencer Street USGS gage between October 1,
1997 and September 30, 2003 as part of the Onon-
daga County Ambient Monitoring Program (Coon and
Reddy, 2008). The USGS used these observed loads to
derive EC input values, which were within the range
provided by the national datasets (Table 1). While
most watersheds will not have observed loads to cali-
brate the EC and EMC datasets, the CADA model
remains a useful tool for estimating a range of possi-
ble NPS loads. Ranges of loads were also calculated,
using the lowest and highest EC values from Table 1
combined with the 10th and 90th percentiles of EMC
values Equations (4) and (5), respectively. The results
showed that for the lowest values scenario, we
observed 59.9 and 3.3 tonnes/year loads for N and P,
respectively. The highest value scenario resulted in
313.3 tonnes/year and 108.1 tonnes/year loads for N
and P, respectively. These ranges provide bounds for
minimum and maximum loading expected over differ-
ent years. Based on the Onondaga Lake Ambient
Monitoring Program, managed through the Onon-
daga County Department of Water Environment Pro-
tection, the range of loading values from Onondaga
Creek to Onondaga Lake is 140-220 tonnes/year for
nitrate and 11-25 tonnes/year for phosphorus. We
recommend using the model with a range of feasible
input values for each pixel, varying EC and EMC
(see Table 1 ranges), as well as varying Rv, R, n, T,
and other terms in order to capture input uncertainty
and provide an upper and lower bound for estimated
NPS loads.

Runoff Indices — Surface and Subsurface

The spatial distribution of the surface runoff index
and subsurface runoff index reflect the impact of con-
tributing areas to the CADA estimated NPS loads.
Both runoff indices use contributing area and as a
result they generally reflect an increasing likelihood
for runoff with proximity to the stream network; how-
ever, there are regions where RIsurf varies signifi-
cantly from RIsub. In the urban areas, such as those
in the northern end of the Onondaga Creek water-
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shed, the RIsurf tended toward higher values (blue
colored pixels, Figure 3A), while the RIsub had lower
values (green and yellow colored pixels, Figure 3B),
which captures the effect of imperviousness partition-
ing precipitation into overland flow. By contrast,
rural land cover will have greater perviousness and
partition precipitation into subsurface flow, generat-
ing relatively low RIsurf values (see yellow to orange
color pixels in the rural southern watershed region,
Figure 3A) and relatively high RIsub values (see green
colored higher pixels in the rural southern watershed
region, Figure 3B). The spatial differences between
RIsub and RIsurf are also due to the RIsub calculation
using soil transmissivity and watertable elevation
data, while the RIsurf used surface elevation data.
The mean RIsub value was 8.4, 50% higher, in natural
log space, than the mean RIsurf value of 5.6. The sig-
nificantly larger RIsub value is attributed to the much
larger watershed area in pervious cover, estimated at
94%, and as a result the Onondaga Creek watershed
RIsub values correspond with reported ranges for
neighboring, predominantly rural, Finger Lakes
region catchments (e.g., Anderson et al., 2015).

Buffer Indices — Surface and Subsurface

The spatial distribution of surface runoff velocities
(Figure 4A) and subsurface runoff velocities (Fig-
ure 4B) largely regulate the corresponding BIsurf and
BIsub. Road networks have the lowest Manning n
roughness values, which create a signature pattern of

high surface velocities where roads contrast with
nonroad pixels (see linear bands of red colored pixels
in the mid to southern sections of the watershed, and
swaths in the City of Syracuse in Figure 4A). The
predicted surface velocities ranged from 0.0002 to
1.7 m/s, with the upper limits agreeing with values
expected for runoff over roads. The predicted subsur-
face velocities were two orders of magnitude lower
than surface velocities, and correspond to residence
times of days to years for flow through the water-
shed. Slope had a large influence on velocity, and in
a west to east transect across the urban area in the
north of the watershed, the surface velocities are at
their lowest in the center of the transect correspond-
ing to the urban floodplain despite a dense network
of roads (see blue colored pixels bounded by red col-
ored pixels in Figure 4A). By contrast, the subsurface
velocities are not influenced by roads and are rela-
tively low values in the northern urban area; they
are highest in the mid to southern sections of the
watershed along the steep valley walls bounding
Onondaga Creek (Figure 4B); the valley is glacially
carved and has classic U-shaped valley walls.

The BIsurf and BIsub values were often highest at
the two geographic extremes of watershed ridges and
valleys or floodplains (see Figures 5A and 5B). The
ridges corresponded to the greatest flow path dis-
tances to the receiving waters, and hence relatively
long travel times, while the valleys and floodplains
corresponded to relatively flat slopes and long travel
times. In addition to flow path length and slope, the
BIsurf is also affected by the vegetative cover in the

FIGURE 3. Surface (A) and Subsurface (B) Runoff Indices and Percentage of Surface Runoff (C).
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dispersal area flow path. When urban stormwater
management involves efforts to slow down surface
runoff, planting higher roughness land cover types in
the dispersal area can increase the likelihood for pol-
lutant buffering and reduce NPS loading. In efforts to
reduce subsurface loading, management options may
include creation of higher transmissivity preferential
flow paths to guide runoff into treatment cells, per-
haps with aeration or biological treatment, as envi-
sioned by Vaux (1968) for improving aquatic
conditions.

Impacts of Elevation and Land Cover Spatial
Resolution

The CADA NPS model predictions of P and N load-
ing hotspots were highly sensitive to the spatial reso-
lution of elevation and land cover. The outputs of P
and N hotspots predicted with 0.3 m and 1 m hori-
zontal resolution inputs captured the pattern of roads
and houses in the 14 ha sewershed (Figures 6A and
6B), while the 10 m resolution did not capture road
patterns and only weakly captured houses (Fig-
ure 6C). The even coarser 30 m spatial resolution
inputs from NLCD are likely the most common reso-
lution for land cover data, and clearly would not cap-
ture spatial patterns of the urban landscape missed
by the 10 m data. Maps of predicted NPS loading can
guide managers toward watershed areas in need of
runoff control measures, and to capture the influence

of urban landscape features such as roads and
houses, the 1 m or finer resolution data are recom-
mended for CADA simulations. The confidence in the
CADA model predicted hotspots, defined as dispropor-
tionately high P or N loads, and their opposite, cold-
spots, can be quantified with the Getis-Ord statistic
at values of 95% (Table 3). The Getis-Ord statistic,
for both hotspots and coldspots, differentiates statisti-
cally significant clusters of high or low valued pixels
from pixel clusters that are randomly organized
(Getis-Ord <95%). The patterns of Getis-Ord hotspots
and coldspots corresponded to the road network
within the 14 ha watershed, noted in the simulation
using 0.3 m resolution input data (Figure 6D), but
less so for the 1 and 10 m resolution simulations (Fig-
ures 6E and 6F). At a 0.3 m resolution, a total of
49.7% of the sewershed fell within hotspots or cold-
spots with >95% confidence; the percentage drops
down to 28% and 3.8% for resolutions of 1 and 10 m,
respectively. This trend is explained by the coarser
inputs causing a blending of otherwise distinct
boundaries between land cover, thereby generating
fewer differences in pixel P and N loading values.
With finer input resolution, there is more opportunity
for the CADA NPS model to confidently predict the
spatial variation in P and N hotspot and coldspot
clusters.

The pixel NPS loads also changed significantly
with the resolution of the CADA input data of eleva-
tion and land cover. The CADA predicted a maximum
pixel N load of 11.7 kg/ha/yr for the 0.3 m resolution

FIGURE 4. Surface (A) and Subsurface Velocities (B).
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simulation, and this maximum pixel N load decreased
by 35% to 7.6 kg/ha/yr for the 10 m resolution simu-
lation (Figures 7A and 7C). As elevation and land
cover input resolution coarsened beyond 1 m, there
was a reduction in maximum pixel NPS load values
and a lowering of the Getis-Ord confidence in the hot-
spots and coldspots pixel clusters. The CADA model
predictions of watershed NPS load, defined as the

sum of all pixel NPS loads, had less sensitivity to the
spatial resolution of elevation and land cover in the
sewershed simulations. Despite pixel load sensitivity
for CADA simulations of P, the watershed P load only
varied by 0.7% between the simulations using 0.3
and 10 m inputs. The 0.3 m resolution inputs of ele-
vation and land cover generated watershed P loads of
1.51 kg/yr, while the 10 m resolution inputs gener-

FIGURE 5. Surface (A) and Subsurface (B) Buffering Indices.

FIGURE 6. TP Sensitivity and Getis-Ord* Hotspot Analysis.
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ated 0.7% larger watershed P loads. Despite the sen-
sitivity of maximum pixel NPS loads to input resolu-
tion, the watershed N load from the sewershed did
not vary significantly with input resolution. The
0.3 m simulation generated a CADA predicted water-
shed N load of 16.93 kg/yr, while the 1 m and 10 m
simulations generated watershed N loads within 1%,
at 16.72 kg/yr and 16.53 kg/yr, respectively.

The CADA predicted pixel P and N loads (Fig-
ures 2A and 2D) were based on the RIsurf, RIsub,
BIsurf, and BIsub values, which are regulated by Man-
ning and Darcy velocity Equations (9) and (12) and
very sensitive to slope values calculated by the Arc-
GIS method. For each pixel, the CADA model calcu-
lated the slopes to each of the eight neighboring
pixels, and selected the steepest slope for the velocity
calculations, but this may not necessarily be the
actual flow path for runoff in urban areas where sub-
grid elevation heterogeneity such as curbs and gut-
ters and riffles may regulate flow slopes. In land
cover classes designated as urban, the CADA slope

calculations were constrained to a maximum slope of
6%, in order to ensure road slopes are within the
recommended maximum (American Association of
State Highway and Transportation, 2011), and runoff
velocities along roads were not excessively rapid.
In cases where higher slopes do exist, flow would
likely become unsteady and depart from Manning
assumptions, which would require alternative,
perhaps hydraulic-based, estimates for velocity.

SUMMARY AND CONCLUSIONS

This research enhanced the CADA NPS model to
achieve three goals in watershed simulation of nutri-
ent hotspot mapping: (1) flexibility to use EC, EMC,
or other NPS loading data for N or P loads; (2) repre-
sentation of impervious and pervious runoff paths in
the contributing area; and (3) representation of sur-
face and subsurface buffer paths in the dispersal
area. These updates are critical for the co-manage-
ment of P and N, which often occur in the surface
and subsurface runoff flowpaths at different propor-
tions. Historically, freshwater systems have been
assumed P limited, due to the abundance of N in
freshwater via N fixing cyanobacteria (Conley et al.,
2009). Therefore, many freshwater management
efforts have focused more on P than N. However, the
urban biogeochemistry of complex social-infrastruc-

TABLE 3. Percentage of Sewershed Falling in Hotspots and Cold-
spots above 95% Confidence.

Resolution (m)

Percent in 95-
99% Coldspot

Percent in 95-
99% Hotspot

Nitrate TP Nitrate TP

0.3 29.4 4.4 20.3 2.2
1 14.8 0.2 13.2 1.8
10 0.0 0.0 3.8 1.3

FIGURE 7. Nitrate Sensitivity and Getis-Ord* Hotspot Analysis.
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ture-environmental interactions result in elevated
nutrient concentrations along accelerated flow paths
with a high level of apparently random individual
decisions affecting receiving water quality (Kaye
et al., 2006). Nutrient loads to urban receiving waters
have been shown to have lower N:P ratios, which
results in N as the limiting nutrient to eutrophication
(Howarth and Marino, 2006). Coastal receiving
waters are N limited (Nixon, 1995), and urban and
rural drainage with elevated N loads, from sanitary
waste, agricultural runoff, and other sources, also
accelerates eutrophication in coastal systems. The
enhanced CADA NPS model allows for simulation of
urban and rural pollutant sources from mixed land
use watersheds, and the surface and subsurface run-
off pathways connecting this pollution with CADA
processes, providing an important management tool
for inland and coastal communities.

The enhanced CADA NPS model provides spatial
maps of the weighted EC and EMC hotspots and cold-
spots contributing to watershed nutrient loads, and
allows managers to differentiate between interven-
tions that reduce surface transported pollutants, such
as particulate phosphorus, from interventions target-
ing subsurface transported pollutants, such as dis-
solved nitrate. While the spatial maps provide a first
order estimate of loading hotspots, they do not repre-
sent the uncertainty in the predictions and users
should run CADA NPS with low and high values of
EC and EMC inputs to simulate a range of possible
NPS loads, which are more likely to capture the
observed loading value for the pixel and the watershed
(Endreny and Wood, 2003). One proposed update for
the CADA NPS model includes simulation of denitrifi-
cation as a nutrient removal process, to better repre-
sent the spatial dependency between organic matter,
moisture, and losses of nitrate in the landscape (Sud-
duth et al., 2013). Another proposed update for the
CADA NPS model is to provide storm-based temporal
variation in load estimates, allowing for managers to
examine loading sensitivity to storm intensity, which
is sensitive to climate change, and where raindrop
splash intensity and pollutant displacement might be
managed by vegetative cover. Each of these proposed
updates would strive to keep CADA NPS a parsimo-
nious first order model that uses available datasets,
and facilitates its use in many watershed projects
evaluating how changes in land cover might affect the
distribution of nutrients in the landscape and loads to
receiving waters.
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